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The asymptotic expansion of solutions of the fourth order differential equation #17 4 A2
[(22+¢) " +azu' +bu] = 0 are investigated for |z| -co where the parameters a, b, ¢ and
A are supposed to be arbitrary complex constants with A, & # 0. Exact solutions in the
form of Laplace and Mellin—-Barnes integrals, involving a Whittaker function and a
Gauss hypergeometric function respectively, are used to define a fundamental system
of solutions. The asymptotic expansion of these solutions is obtained in a full neigh-
bourhood of the point at infinity and their asymptotic character is found to be either
exponentially large or algebraic in certain sectors of the z-plane. The expansions
corresponding to certain special values of the parameters a and 4 which yield logarith-
mic expansions are also treated. Linear combinations of these fundamental solutions
which possess an exponentially small expansion for |z| >0 in a certain sector are
discussed.
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1. INTRODUGTION AND SUMMARY OF THE MAIN RESULTS

In this paper we determine the asymptotic expansions of solutions of the fourth order differen-

tial equation
4 dz
%+A2[(zz+c)d—;+azg—z~;+bu] =0 (1.1)

PHILOSOPHICAL
TRANSACTIONS
OF

Vol. 293. A 1404. 38 [Published 4 January 1980

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Qﬁ%%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MIKOIY
Www.jstor.org


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

p
[\ \

PHILOSOPHICAL
TRANSACTIONS

A \
! B

SOCIETY

—
>~
O H
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

512 R.B. PARIS AND A.D. WOOD

for large values of the complex variable z. It is supposed that the parameters a, b, ¢ and A are
arbitrary complex constants and that both A and 4 are non-zero. The interest in an investigation
of (1.1) lies in the fact that it is the simplest form of fourth order equation possessing two simple
transition points (corresponding to the zeros of the coefficient of the second derivative in the
neighbourhood of which the classical Liouville-Green (W.K.B.J.) approximations break down)
for which exact solutions may be found in the form of integrals of the Laplace and Mellin—Barnes
type. These integral representations are subsequently amenable to asymptotic analysis by
standard techniques and enable asymptotic expansions of solutions of (1.1) to be found which are
valid in a full neighbourhood of the point at infinity in the z-plane.

Previous investigations of (1.1) in the special case ¢ = 0 have been carried out by Wood (1968,
1971) in connection with the deficiency indices of certain self-adjoint fourth order ordinary
differential operators and by Paris (1975) in the discussion of the propagation of electromagnetic
waves in an ionised gas permeated by an inhomogeneous magnetic field (Fidone & Paris 1974).
The case with ¢ = 0 has been studied by Erokhin (1971) employing methods different from those
described in the present article. The differential equation (1.1) is a particular case of a more gen-
eral fourth order equation, in which the coefficients are arbitrary analytic functions of z and A,
considered by Langer (1957, 1959) and Lin & Rabenstein (1960) in connection with the well
known Orr-Sommerfeld equation describing the hydrodynamic stability of parallel shear flows.
These authors were concerned with the determination of uniformly valid asymptotic expansions
of solutions when |A| assumes large values for z lying in a domain containing one simple transition
point only. A similar problem has been discussed by Lakin (1974) and Lakin & Nachman (1978),
who encountered an equation of the form (1.1) describing the transverse oscillations of a rapidly
rotating slender rod.

If the independent variable z is replaced by pAz, where p denotes a root of the equation
p*+1 = 0, the canonical form of (1.1) may be taken without loss of generality to be the equation

g;:— [(22+4K)%+az%+bu] =0 (1.2)
where « = }p?Ac. We denote in §2 a fundamental solution of (1.2) by the integral function
Uy, ,(a,z) where v = }{(a—1)2—4b}}, in terms of which a linearly independent set of solutions
may be formed. The definition of U, ,(a, z) is expressed by means of Laplace and Mellin—Barnes
integrals, together with their analytic continuations, and its asymptotic expansion for |z| -0 is
determined in §§3-5 for arbitrary complex values of a, b (and hence ») and « by examination of
these integral representations. The asymptotic character of U, (g, z) is found to be either expo-
nentially large or algebraic in different sectors of the z-plane and the discontinuous change
occurring in the coefficients multiplying the exponential and algebraic expansions (the Stokes
phenomenon) as certain rays in the z-plane are crossed is obtained. In many physical applications
itis desirable to have solutions which possess an exponentially small expansion valid in some sector
for |z| - co. Such solutions are investigated in §6 by consideration of linear combinations of the
fundamental solutions of the type U, ,(a, 2).

We now summarize the principal results contained in this paper concerning the asymptotic
expansion of the solution U, ,(a, z) for |z| - oc0. We define the formal asymptotic sums

(22%)™"
n!

(5~

[N

SO,(z) = (2m)} éo 2= 26)y, oF, ( 1 (1.3)

-, $+V—k, F—Vv—k; l)
5 1 7 1 . ’
12— 20K, £ —za—K;
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© z—2n (

I'(2v) V—K)

(@) = 2 2 (11 —n — <1 _pe 1

SK,V(Z) I‘(%-}-V—K) nebo n' (1—21}) F(zd 2 2V+2n) 2F1( n3 n+2v, 2 +V+K n’ 2)
(1.4)

(=), I'(2v— n)F(za———2v+2n)F( n, —n+2v; y+v—x—n; 3. (1.5)

o n! z I'}+v—«x—n)

|
M

Provided that 2v is not an integer or zero the asymptotic expansion of U, ,(a, z) as |z]| -0 is
U, ,(a,z) ~ zho-b+2xels §O () (argz = 0)
~ Zho—§+2xede? S(l) ( ) + (e—niz)%—%a+2v S’((2’)v(z) + (e—niz)%—%a—w Sff)_,,(Z) (0 <argz < %n)
~ zho—brel? SO (7) + (efiz)d-det2r §@) () + (eMiz)i-2e-2 §@ (2) (—4n < argz < 0)
> (—z)iinr ‘3,%( )+ (2282 (2) (larg (-2)| < §m). (1.6)
When 2v is a positive integer M or zero (it being sufficient to consider only positive M since

U, ,(a,2) is even in ») the sums S&,(z) and S&_,(z) in (1.6) are to be replaced respectively by
§&,(2) and S&,(2), where

oF(—n, 2v—n; 3 +v—k—n; %), (1.7)

_M—l(——) _an L (@v—n) I'(3a—}—2v+2n)
S'(‘?)”(z)_ngo n! I'}+v—k—n)

SE(z) = (=) = won,(:j::v), F(ﬁé—_%vtz:jjn) [{z/f(n+ 1) +y(n+2v+1)

—2¢0(3a—3+2v+2n) +2In(—422)} . Fy(—n, —n—2v; $—v—k—n; })

w (1 —
s L] o

When « = 0 the asymptotic sums appearing in (1.6) simplify considerably and we have

® (222)—™ —n, $+v, 1 —v;
s = ot § BT G ga.p (200 00, (1.9
124 §— 18
92v—1p} (22)—47» F(la—1—2v+4n)
@ () — 30— 3
So.v(2) sinmy ,=p nl I'(n—v+1) (1.10)
and when v is a positive integer M or zero
S8 (2) = 221 2 (= ) (2z)~" I'(v—n) I'(}a—} —2v +4n), (1.11)

n=0

0 27)—4n
S = 2-w(-) %(—Z—L——)—,
—Y(a—%+2v+4n) +1n(-22)}. (1.12)

The sums S &, (z) and S, (z) in (1.7) and (1.11) are to be interpreted as zero when » = 0.

The above expansions hold for all finite values of the parameters a, v and k as |z| - 00 except
when da—1+2v = —m,m = 0,1,2, ... where U, ,(a,z) possesses poles. In §2 it is shown that by
suitably normalizing U, ,(a, z) it is possible to define a solution of (1.2) which is analytic for all
values of the parameters and which reduces to a polynomial in z of degree m at these exceptional
points.

T(ja—§+2-+4n) (0 1) + 3ln+ v+ 1)

38-2
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514 R.B. PARIS AND A.D. WOOD

2. Di1sCcUSSION OF THE SOLUTIONS AND INTEGRAL REPRESENTATIONS

We consider the solutions of the differential equation expressed in the canonical form

4 2
g—zg—[(zz+4/<)g—z~z—;+az g—z+bu] =0 (2.1)

for large values of |z|, where 4, b and « are arbitrary complex constants and where it will be
supposed that & is non-zero. A solution of (2.1) in the form of a Laplace integral may be written as

(Paris 1975)
U, ,(a,2) = f ® et oW, () ds, (2.2)
0

where W, ,(#2) is the Whittaker function of the second kind and the parameter v is defined by
v =H(a—1)2—4b}. (2.3)

The path of integration in (2.2) is taken to be the positive real axis but may pass to infinity any-
where in the sector |argt| < im since the Whittaker function behaves like #2€exp (—3¢2) as
|f| >0 in |argt| < #n (see (4.18)). The representation (2.2) defines U, ,(a,z) for all values of
arg z and represents a continuous function of z uniformly convergent throughout the finite z-

plane for
Re(a) > 1+4|Re (v)]. (2.4)

From the fact that W, ,(¢2) is an even function of v it follows that
U ,(a,2) = UK. _,,(a, Z), (2.5)

and it will be sufficient in the subsequent discussion to consider only values of » with Re () > 0
An integral representation of U, (4, z) of the Mellin-Barnes type may be obtained from (2.2)

by employing the result
1 i
¢ =5z mwiI’(-—s)(—x)sds larg (—x)| < 4,
in which the path of integration is suitably indented at s = 0so as to lie entirely to the left of all the

poles of I'( —s). From (2.2) we then find

Uy (0,2) = 5 f iir(_s) (—z)s{ f 0°° porleb g, (1) dt} ds,

where the reversal of the order of integration is justified provided |arg (—z)| < ¥wand Re (a) > 1
+4|Re (v)|. Evaluation of the inner integral (Slater 1960, p. 53) then yields the Mellin-Barnes
representation

U, (a,2) = —— f 2(s) T(=s) (—2)°ds, (2.6)
with
(5)_1 IGs+ia—i+v) IEs+ie—1-v) 5 (25+4d—~+v s+ta—t-v; 1) 2.7)
£ =3 T(s+3a+1—x) "1\ +da+ ik ) =
I'}3s+ia—3+v)I'(3s+3a—1—v) F4v—k, F—v—x; )
= 9ta—-J+x+is T \2 4! 4 2 4 2 52 ’ 1
2 T(s+at1=7) 2 1(%s+;1;a+%;—1<; 3), (28

where we have used the Euler linear transformation for the Gauss hypergeometric function
(Slater 1966, p. 10). The path of integration in (2.6) passes to the left of the poles of I'(—s)
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ASYMPTOTIC EXPANSION OF SOLUTIONS 515

situated at s = 0,1, 2, ... but to the right of those of I'(}s+ }a— } + v) situated at s = } —La ¥ 2v
—2m,m =0,1,2, .... Thefunctiong(s) isregularat the pointss = — } — 3a— 2k —2m (m = 0, 1,2, ...)
corresponding to the poles of ,F (4), owing to the presence of I'(}s + ta + } — ) in the denominator
of g(s).

For |s| - oo the hypergeometric function in (2.8) behaves like 1 + O(s~1) so that employing the
asymptotic representation of the gamma function (Whittaker & Watson 1965, p. 251) the log-
arithm of the integrand in (2.6) for large |s| in |args| < = is

((a—%+x—%s)Ins—%s In 2+ §s—1In (sin ns) +5 In (—4/22) + O(1). (2.9)
The dominant real part of (2.9) as |s| = oo on the imaginary s-axis is consequently
Re (}a—%+«k)In|s|—A4|s|+0(1), 4 = §n + arg (—z).

The integral representation (2.6) has been proved in |arg (—z)| < %=, but since the modulus
of the integrand as |s| —+o0 on the path of integration is O(|s|Re@e—I+0 e~4is)) it follows by
the principle of analytic continuation that (2.6) represents U, ,(4,z) in the wider domain
larg (—2z)| < §r.

The condition (2.4) is equivalent to restricting the poles of g(s) at the points s = § —3a + 2v
—2m (m = 0,1,2,...) to lie entirely in Re (s) < 0. This restriction on the validity of the Mellin—
Barnes representation (2.6) may be removed to include values of the parameters ¢ and v not
satisfying (2.4) by suitably deforming the path of integration in (2.6) into Re (s) > 0 to pass to the
right of any of the poles of g(s) which lie in Re (s) > 0 but to the left of the poles of I'( —s). This
separation of the poles is possible for all values of the parameters except when

a=1+4v—-2m, m=0,1,2,..., (2.10)

corresponding to the coincidence of poles of g(s) with those of I'( —s).
From (2.2) or (2.6) it can be shown that U, (g, z) possesses the Maclaurin expansion (Paris

1975) 3 §
Ug,»(a,z) = ngog(n)-;—_, (2.11)

where g(n) is defined in (2.7) or (2.8) with s = n. The function U, (g, z) is then seen to be an in-
tegral function of zof order 2 (Copson 1935, p. 178) uniformly and absolutely convergent through-
out the finite z-plane for all values of 4, v and « except those in (2.10), where it possesses poles.
The expansion (2.11) represents the analytic continuation of the integral representations (2.2)
and (2.6) to all values of arg z and, with the exception of (2.10), all values of the parameters. From
(2.11) and (2.8) it follows that derivatives of U, ,(a, z) with respect to z are given by

dr
(—i—z—p[/;,,,(a,z) =U,  (a+2p,2), p=1,2,....

An alternative form of expansion of U, (4, z) in terms of the Hermite polynomials H, (z) may
be found by expressing (2.11) together with (2.7) as a double sum which, after suitable rearrange-
ment, may be summed diagonally to give
& (=) I'(a—%t+v+n)I'(la—}—v+n) (iz)

2n

Uss(®2) = B gy 3" (1a + } +x+1)

i $ () TGati+vin) Ma+i—vin) , (iz
n=o (2n+1)! 27 t3(Fa+ 3 +K+n) 1| 7g)

N2

(2.12)
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516 R.B.PARIS AND A.D. WOOD

The expansion (2.12) has the merit of exhibiting U, ,(a, z) as the sum of an even and odd series of
Hermite polynomials which, apart from (2.10), converge uniformly and absolutely for all finite
values of z and the parameters a, v and «.

In the special case x = 0 the Whittaker function in (2.2) reduces to the modified Bessel function
of the second kind since W}, ,(¢2) = n~%¢K,(}¢2), so that

Uy \(a,2) = n"%f : etk K (1) dl Re(a) > 1+4/Re ()], (2.13)

(Wood 1968, 1971; Paris 1975). The hypergeometric function appearing in (2.8) is summable by
Gauss’s second theorem (Slater 1966, p. 243) and we consequently obtain the representations

ta—2 oi
Utz = 5wt [ (=22 T(=9) Tlis + a3+ 9) Tls =4 - 1) &
-— 001
larg (—2)| < §n  (2.14)
] n
— ol n-%né;o__@;!) I(n+3a—3+) Tln+a—t— 1), (2.15)

where, as in (2.6), the path of integration separates the poles of I'(—s) from those of I'(}s+%a
— 3%+ 1v). Both representations (2.14) and (2.15) hold for general values of @ and v with the
exception of those in (2.10). Solutions of the differential equation (2.1) in this case have been
shown to be expressible as ,F, generalized hypergeometric functions and are discussed further in
connection with a more general differential equation of order z (> 3) in Paris (1978). For certain
values of the parameters @ and & these solutions reduce to Bessel and related functions (Paris
1975).

When a = 3 the function U, (4, z) may be represented in terms of products of Weber functions
(Paris 1975). This latter result in the particular case x = 0 may be obtained directly from (2.13)
since when a = 3itis of the form of an integral discussed by Meijer (1935). A further special case
arises when k = % + v since the Whittaker function W ,(¢2) reduces to *2 exp (—4¢2) and the
resulting integral (2.2) may be evaluated as a Weber parabolic cylinder function

U%:!:v, v(aa Z) = F(%a - % + 2V) e%zz‘D%—%cﬂFh( - Z) . (2' 16)
The solutions of (2.1) considered by Erokhin (1971) in the case ¢ = 0 involved integrals of the
Weber parabolic cylinder function of the form

f sha—i=2(1 — 2)r=ed (1 4 s2) b el Dy 4, 5 (25) ds,

taken along appropriately chosen paths in the complex s-plane. It may be readily shown that the
solution U, ,(a,z) may be expressed as an integral of the above type over the interval [0, 1] by
employing the representation of the Whittaker function (Slater 1960, p. 51; Whittaker & Watson
1963, p. 340)

fl+2r e—3t? oo . L L
W, (¢ e~ yr—+—3(1 +u) -t du largt| < in, Re(f+v—k) >0,

TTGHv=1Jo
in (2.2). Provided Re (@) > 1 +4|Re (v)| and Re (} +v—«) > 0, so that the order of integration
may be reversed, we find
91—-2» ©
Ila—}+2) 1
TE+v=x) Jo~

Ue (@, —2) (w?—1) vrod (w*+1) v {fw est—hwt® gha—$+2r q¢} dw
0

= 91-2v %“‘%_2”(1 —s?) v—k—} (1452) v elets® D%—%a-—z»(zs) ds,

(2.17)
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upon evaluating the inner integral in terms of a parabolic cylinder function and making the
transformation w = 1/s in the outer integral. It will be observed that in (2.17) the parameter « is
no longer present in the transcendental function and appears in the integrand only in the alge-
braic factor [(1+52)/(1—s%)]%. The integral representations discussed by Erokhin were taken
along paths which avoided the origin s = 0, with end points the branch points s = +1, *iand
the point at infinity in suitably chosen directions.

The differential equation (2.1) is unaltered if we simultaneously replace z and « by wz and
w?k, where » denotes a fourth root of unity. It follows that, except for the special values of the
parameters in (2.10), a fundamental system of solutions of (2.1) is represented by

Ugr(@, 2), U_,,(a,12), Ug,(a, —2), U.,,(a, —i2). (2.18)

From the transformation in (1.2) a system of solutions of the general equation (1.1) may conse-
quently be expressed in terms of U, ,(a, z) by

Uper (@, Adzet™), Uy (g, Aze 1) U_y (g, dzel™), Uy, (g, Adze i), (2.19
Hea, v —iea, —Hea, Hea,

Since the solution U, ,(a, z) possesses poles for values of @ and v given by (2.10), a more suitable
form for the representation of a fundamental system of solutions of (2.1) may be taken to be the
function

Us»(a, 2)

el 2) = Fpa =T+ ) TGa=] -2

(2.20)

which is analytic for all values of the parameters a, v and «. For the special values of 2 and v in
(2.10), however, the set of solutions 1, (4, 2), U_, ,(a,iz), U, ,(a, —2) and U_, ,(a, —iz) is no
longer linearly independent as may be seen by inspection of (2.11) and (2.8). For when }a—} +v
=—im,m=1,2,..., we havel (k # 0)

uK,V(a’ Z) = (_)m uk,v(a: _Z)3 }

u—K,v(a3 lZ) = (_)m 11_,(, v(a: —iz), (2.21)

where U, ,(a,z) and 1_, (g, iz) are either even or odd polynomials in z of degree m according as
mis respectively even or odd. Because 11, ,(a, z) is even in v we need only consider v = }a —} + Im,
m = 1,2, ..., so that a second solution may be taken in the form (cf. the definition of the Bessel
function of the second kind in Watson (1944), p. 57 et seq.)

U,,,(a z)cos(2v—3a+})n—W,,(a, —2)
I'1+2v—%a+§)sin(2v—$a+$)n ’

(2.22)

which represents an independent solution of (2.1) for all values of the parameters a, v and k<. When
2v — La + 1 takes on positive integral values m, (2.22) possesses the limit

1 [ol,,,(a, 2) , .\, OU,,(a —2)
| (- Sy =]

2nm! ov ov

evaluated at v = }ta—} + 4m. In a similar manner a fourth linearly independent solution may be

defined as u_,,,(a iz)cos (2v—3a+3)n-U_, ,(a, —iz)

I'1+2v—%a+%)sin(2v—4a+4)n ’

(2.23)

so that (2.22) and (2.23) together with I, ,(a,z) and U_, ,(a,iz) constitute a fundamental system
of solutions of (2.1) for all values of the parameters.

1 The case m = 0 is degenerate since this corresponds to b = 0.
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518 R. B. PARIS AND A.D. WOOD

3. THE ASYMPTOTIC EXPANSION OF U, (4, 2) IN |arg(—2z)| < $n

The asymptotic expansion of the solution U, (g, z) for |z| - co in the domain |arg (—2z)| < $=n
will be obtained by means of the Mellin—Barnes integral representation (2.6)

(4, 2) ——f gs) I'(—=s) (—2)ds, |arg(—2z)| < m, (3.1)

where g(s) is defined in (2.8). The path of integration is suitably indented along the imaginary
axis so as to separate the poles of I'(—s) from those of g(s) situated at

=%_%ai2V‘—2n> n=0>1a2a“" (3'2)

and represents the function U, ,(a, z) for arbitrary « and all values of @ and v except those given in
(2.10). The two infinite sequences of poles in (3.2) are simple except when v is zero, when they
form a single sequence of double poles, and when 2 is a positive integer M (cf. (2.5)) with all but
the first M poles being double.

In the manner described by Slater (1966, p. 143) we consider the integral (3.1) taken round the
rectangular contour with vertices at +i£, — 7"+if where £ and T are positive with £ > }|Im (a)|
+2|Im (v)|, in order that the sequences of poles (3.2) lie between the upper and lower sides of the
rectangle, and 7 'such that none of the poles (3.2) lies on the line joining the vertices — 7"+ i&. The
contributions from the upper and lower sides given by s = —x +i£, 0 < ¥ < T vanish as £ is made
to tend to infinity if |arg (— z)| < $n since the modulus of the integrand on these paths can be seen
from (2.9) to be Of|z|~#gReGa—T+r+1n) e~4£} with A = §n + arg ( — z). The modulus of the integrand
on the path s = — T'+it parallel to the imaginary axis is |z|~Z0{|¢ | ReGe—F+<+T) e~4it]} where the
constant implied in the O symbol is independent of z. It follows that the contribution from the
side joining the vertices — 7'+ i& is O(|z|~T) for |z| >0 in |arg (—2z)| < &n.

When 2v is non-integral the residues of the integrand in (3.1) at the simple poles (3.2) are

o (=) (+2v—n)T'(3a—3F2v+2n t+v—k, 3—v—k;  rata
e iR A T N ICP T S
(=)rI'(+2v—n)I'(3a—%F 2v+2n)

— = . — sl iy g pe 1) (— 2)i-dat2v—2n
nl T(%iv—x—n) 2F1( n, ni2v, g TV—K—=n 2)( Z) >
(3.3)

by Euler’s transformation. Owing to the presence of —7 in the numeratorial parameter the ,F/,

hypergeometric function in (3.3) is a finite series. A further transformation of (3.3) may be
obtained by making use of the result (Abramowitz & Stegun 1965, p. 559, formula 15.3.6)

; oI (—n, —n+2v; Ftv+r—n; }), (3.4)
where («),, is Pochhammer’s notation for I'(a + ) /I'(a). Employing the properties of the gamma
function and (3.4) we find

+I +I

Fi(—n, —nt2v; dtv—k—n; §) = (=) E

(S

n I(£20—mn)
) PR zv—x—n)
I'(+2v) (3Fv—«),

STGiv—r) (1720, ° (=n —n 20 vtk —n; 3), (8.5)
- n

Fy(=n, —nt2v; fv—k—n; §)
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so that an alternative expression for the residues (3.3) is

1 I'(+2v)

< oyt o EFV=H) . . .
o T ey Ta =% 2 20) Sl (=, —nt 203 hew b ) (—2)besseon

(1F2v),
(3.6)

Application of Cauchy’s theorem then yields the asymptotic expansion for |z| - coin |arg ( —z)]
<in

LTy jarey S 2 BV =Ky
UK,,,(a, z) ~ m (—z)if fa+2 P2 0 n' ?1 o, I'(}a— — 2y + 2n)
n+2v; , I'(—2v) ey, & 27
2Fl(1+v+/< n; 2)+F(% )( it Zo n!
«EFY=K)n piay 140y 4 om) ,F (‘” T2V (3.7)
1+2v), T\ vtk - '

which holds for all values of the parameters except those in (2.10) and when 2vis an integer or zero.
When 2v» is a positive integer M or zero there are M simple poles of g(s) situated at
s=%4—3a+2v—2n,n=0,1,..., M —1 with the residues

(=) I'(2v—n) I'(3a—% —2v+ 2n)

- —n: 1 —k—n 1) (= 2)i-tat2v—2n
n! I'}+v—k—n) 1= v —n; §+v —k—n; §)(—2) >

together with an infinite sequence of double polesats = § —4a—2v—2n,n = 0,1, 2, ... . The resi-
dues at the double poles may be determined by consideration of the logarlthmlc derlvate of the
function

y(s) = 4(Fs+ia—+v+n)? I'(=5)(-2)%(s)

_ 4I'(—s5)(—2)*4(s) F(gs+ia+%+v+n)
T Is+ie— 140 T(s+ia—1-») Gs+da—g+v+n)..(bstia—1+y)

(§s+;}a+%+1}+n)
(%s+i-a Stv+n) ... (Ist+ia—1—-v)

evaluated at s = 1 — }a— 2v — 2n. By employing the fact that the derivate with respect to s of the
hypergeometric functlon oFy (o, B5v+%s; ), where a, B and y are independent of s, is given by

Wy +38) oFy (e B v +355 3) — _;_

the residues at the double poles are found to be

(=)»I'(3a—%+2v+2n)
nl(n+20)! I'(} —v—k—n)

(—z)b-ta—v—2n [{tﬁ(n 1)+ (n+ 20+ 1) — 29 (ha—} +2v + 20)

+21In (—4/22)} o Iy (—n, ~n—2v; —v—k—n; }) — 2<%

o S GHrv—n), (G- ))m¢(%_y—x+m—n)]-

m=0 2™t"ml(}—v—Kk—n

39 Vol. 293. A
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520 R.B. PARIS AND A.D. WOOD

The asymptotic expansion of U, ,(a,z) when 2v = M for |z| o0 in |arg (—z)| < §m is conse-
quently

Unrla 2) = (—2)ptoe 5 (- E2 T2 ﬁﬂf f__jmn)

X aFy(=n, 20 =15 § 4y =k =5 §) + (= )( = 2)bbe

® z72 I'(3a—%+2v+2n)
X I A r D) TG—r—r—n)

+2In (—4/22)} Fy(—=n, —n—2v; }—v—k—n; §) — 2%

[{zﬁ( +1)+ ¢ (n+2v+1)~2¢(3a—3+2v +2n)

QG+ —K)nE=V=K)m
x E T Sae——— g&(—g—V—K+m-—n)], (3.8)
where when v = 0, the first sum in (3.8) is to be interpreted as zero.

For « = 0 the hypergeometric functions in (3.7) are summable by Gauss’s second theorem so
that after some manipulation of the gamma functions we obtain the expansion (Wood 1968;
Paris 1975)

_mi(—z)iHde o °° (2z)“4” I'(4n+}a—1%—2v)
Uo.»(,2) = 2sin v {( 22 ) n! I'n—v+1)
oy °° (22)~* I'(4n +3a— % + 2v)
—(=29) n=0 n! I’(n+V+§1) }’ (8.9)

for |z]| > o0 in |arg (—z)| < $n valid for all values of e and v (non-integral) except those in (2.10).
The expansion for k = 0 and v integral is more readily obtained by considering the integral (2.14).
When v takes on integral values M (> 0) the integrand of (2.14) possesses M simple poles at
s=3-la+2v—4dn,n=0,1, ..., M—1 of residue

— ) ‘
ota-% n‘%-(——;l!—)- (—2z)3-tot2-tn P(y —p) I'(3a — § — 2v + 4n),
and an infinite sequence of double poles at s=%—3a—2v—4n,n = 0,1, 2, ... of residue

gpary T E(=)" (%( ))' (= 2z)b-o-2r-n [(3a— } + 20 + 4n) {1y (n + 1)
1P (n+v+ 1)~ (3a—}+2v +4n) +1n (— 22)).

The asymptotic expansion of U (4, 2) for |z| > o0 in |arg (—z)| < #n when v = M is therefore

M~-1(_\n
Uy ola, 2) = 2tni (=i 5, i.;‘l.. (22)~4n (v —n) T(3a—3— 20+ 4n)

© 97)—4n
4912 TC"%( _ )v ( —_ z) 3—-4a—2v n§0 7’1%—(%1)-)7

+3(m+v+1)—y(a—3+2v+4n) +1n (—22)}. (3.10)

T(3a—}+2v+4n) ((n +1)

In the special case v = 0 all the poles to the left of the path of integration in (2.14) are double
and we consequently have the result

Uy ola, 2) ~ md(— Z)Ha (2(23)2 I(3a—%+4n) {f(n+1) — 20 (ha—} +4n) +21In (— 22)}
: (3.11)

for |z] > o0 in |arg (—2)| < §n provided a— 1 is not zero or a negative even integer.
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ASYMPTOTIC EXPANSION OF SOLUTIONS 521

4. THE ASYMPTOTIC EXPANSION OF U, (a,2) IN |argz| < }n

The asymptotic expansion of U, ,(a, z) for |z| = o0 in the domain |argz| < 4= will be deter-
mined by consideration of the integral (2.2), in which the path of integration may be deformed to
pass to infinity anywhere in the sector |argt| < }n. We write

U, ,(a, z) = {f01+f02} edtla-E W, (¢2)dt, Re(a) > 1+4|Re(¥)], (4.1)

where as shown in figure 1 the path C, isthe ray arg ¢ = + n —arg z emanating from the origin and
terminating at the point ¢ = —z (the bar denoting the complex conjugate), with the upper or
lower sign being chosen according as z lies in the upper or lower half plane, and the path G, is a
line parallel to the real ¢~axis commencing at ¢ = —Z and passing to infinity in |arg#| < }n. The
path C, passes through the point ¢ = z, which can be seen to be a saddle point of the integrand in
(4.1) for large |z| in |argz| < = since W, ,(¢2) behaves asymptotically like ¢ exp (—$¢2) in
|arg#| < $n. In a right half plane containing ¢ = z the path C, is the path of steepest descent
through the saddle point.
= C,

- P 2

Ficure 1. The paths C; and C, in the #-plane with 6 = argz shown positive. Along the path Cyarg¢ = n— 60 and
the path G, passes to infinity parallel to the positive real axis through the saddle point at ¢ = 2.

The asymptotic behaviour of the Whittaker function in the left half #-plane may be found from
the analytic continuation formula (Slater 1960, p. 28)

) 2miM, (2 e¥om)
Welt) = 2 71 5 20 T 7 29)

e’aniv [,VK’ v(tz e$21:i), ( 4. 2)

for }n < |argt| < m, where the upper or lower signs are to be taken according as ¢ lies in the upper
or lower half planes respectively. From the asymptotic behaviour of the Whittaker functions
(Slater 1960, p. 61) we therefore have for |t| +>c0in i < |argt| < =

2mi e:t21til< 2 2
"F(%+V —k) (3 —v— /c)

Consequently W, ,(#2) tends to zero exponentially only in the sector |arg¢| < 1= and, in fact, use
of the analytic continuation formulae to cover successive Riemann surfaces shows this to be the
only sector. It follows that W, ,(t2) satisfies

W, (8%)] < K|t |[PRetl ehittiicos2dl, - = argy, (4.4)

for [t| +ooin }n < |argt| < m, where K is an assignable constant.

W (tz) ~ 2 e—it? 4

(4.3)

1 This result is not in contradiction with the behaviour 2 exp (—4t?) in |arg ¢| < 4= since in their common
domains of validity $n < |arg¢| < 4= the second term in (4.3) is subdominant. The rays arg ¢ = + §n are
anti-Stokes lines for the function W, ,(12).

39-2
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522 - R.B.PARIS AND A.D. WOOD
For non-integral values of 2v, W, ,(¢2) is defined as (Slater 1960, p. 14)

W) = )ALyt

I'(-2
= T+ —7) S M, (+.5)

where the Whittaker function of the first kind M, ,(¢2), is given by
M, (12) = e ¥ 420 B (3 +v—k; 1+ 20; 12), (4.6)

with ,F, being the confluent hypergeometric function. Denoting by 4,,(v) the coefficient of {2 in
‘the expansion in ascending powers of 2 of

e 3 F (3 —v—k; 1—2v; £2),

we may write W, (¢?) in the form

I'(2v) oy & I'(—2v) ® v
2 - N/ 12y 2n . N 142y — 21 4.
Wilt?) = s 18 3 Ay0) ot =2 pine 5 4 (-, (4)
provided 2v is non-integral, where

R G P et et P

A0) = B T Ty, i)
1 (%_V_K)n . ' .
= JWZFI(_,Z’ —n+‘2v, %+V+K—n, %), (4.8)

on making use of the result («),_,, = (—=)™(@),/(1—a—n),.

(a) Contribution from the path C,
In the subsequent discussion of the contribution arising from the path C, we present only the

analysis for the first series in (4.7), since the contribution resulting from the second series may be
obtained by replacing v by —». We define

N-1 :
Py, ,(t) = et M _(#2) —the-d=2 5 A, (v) 2, (4.9)

n=0

and write z = xelf, where x and 6 will be supposed real. Then

' : N-1 E x ‘
f e®t tha—% MK’ _V(tz) di = einEn—0) 3 An(V) e——zniHJ‘ e—%u yr—1+2n dy — c—iﬁf C‘I“TN, v(t) du,
C n=0 0 0
' (4.10)

where g = $a—1 —2v and on the path C, ¢t = uexpi( + n — ), with the upper or lower sign being
chosen according as z lies in the upper or lower half plane respectively.

From the analytic continuation formula and the asymptotic behaviour of M, ,(¢2) (Slater
1960, pp. 28, 61) we have Yy ,(f) = O{|t|2Re®l exp (}|¢[2|cos 2¢|)} as |¢|>o0 in |argt| <=
(cf. (4.4)). At the end point ¢ = —Z of the path C;, e=® Wy (¢) is therefore dominated by
exp { — %+ }x2| cos 20|} < exp (— $4?). The last integral in (4.10) may consequently be estimated
by Laplace’s method (Olver 1974, p. 80) where the dominant contribution arises from the
neighbourhood of the origin where ¥y, ,(f) = O(¢#-1*2N), Then as x - + oo we find

j T emmupy, (£)du| = O(xb-lara-an), (11)
0
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ASYMPTOTIC EXPANSION OF SOLUTIONS 523

Evaluation of the first integral on the right hand side of (4.10) yields
fx e~Tuyr i dy = xr=2{(u+ 2n) — I'(p + 2n, x2)} ~ x~#22 ['(u + 2n) | (4.12)

. .

as ¥ -> + oo since the incomplete gamma function I"(x + 2n, x2) possesses the asymptotic behaviour
x2+in—2 e==* (Abramowitz & Stegun 1965, p. 263). From (4.10), (4.11) and (4.12) we conse-
quently have for x— + oo
ot tha—% 2y df — (e¥ni pyi—dater [ An(¥) oy 4 —2N
f(’lc ot M, _ () dt = (eTz) {ngo—z—Zn—F(ia—§~2v+2n)+O(z )}, (4.13)
and the contribution to U, ,(a,z) resulting from the path C, therefore has the asymptotic
expansion

I'(2v) © (b —v=x), |
2 S)h-datey CAAAYE % o 75 D B —n — 14l —n:l
1.,(%_+V_K)( z) 2o (1=, I'(ta—1% ‘2v+2n)2F1( n,—n+2v;3+3v+r—n;})
( 2V) }-ta—2v Xz (%+V—K)n 1 .
TG T B S ey, LBem it
2Fl(—n,—n—2v,g—v+kt—n; 1), : o (4.14)

where —z is to be interpreted as e¥™ z according as z lies in the upper or lower half plane re-
spectively. The algebraic expansion (4.14), which has been obtained for values of the parameters
satisfying (2.4), may be seen to be the same as that in (3.7) valid in the domain |arg (—z)| < £
and for all values of a, » and  with the exception of (2.10) and integral values of 2v (see §5).

(b) Contribution from the path C,
The integral along the path C, through the point ¢ = z may be written as

— 041 © -+
{f ”+f ’ }eztt%“-% W, (#)dt, z=E+in, (4.15)

~E+iy ~8E+iy

where £ and 9 denote the real and imaginary parts of zand a 8 is chosen to satisfy 0 < ¢ < 1such
that the end point at —d%+i7 lies in the sector in < |arg?| < gn. With this choice of & the
Whittaker function in the second integral in (4.15) may be replaced by its asymptotic expansion
valid in |arg?| < #=. It is to be noted that if }r < |argz| < }n the end point —z = —£+iy
already lies in 4m < |arg¢| < ¢ and so we may then put & = 1 and the first integral in (4.15)
vanishes.

We parametrize the path of integration over the ¢-interval [ — £ +iy, —d8&+iy] in (4.15) by

t = —af+iy, where 0 < 0 < a < 1 50 that, for large |z| in |arg z| < 1=,
! ] !
I= U Test ot () di| < £ b im (,,»f e 81" (@282 + Ao @k [ (%) |dax -
—E+iy ’ oo |

< K¢ e Im ()l f ! (a2g? +772)iRe (@—§+Re ()] e—F (@) dg
by (4.4), where Flo) = ag?+n2—§|a?2 —92|.

As the path of integration is described from & = 1 to & = 8 F(«) steadily decreases from its value
?—3x?%| cos 20| at @ = 1 to the value §92+ 0(1 + }8) £2 at o = 8. Consequently, for |z| > 1

1
I < K¢ e3nlim (@)l ¢—F(8) f (azgz + ﬂz)iRe (@—E+HRe () g
8

< KE(1 - 6) edtIm@l(| 2| |cosec f|) #Re @~E+2Re W)l e—F(3), (4.16)
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where, provided arg z # 0, F(8) - + oo as |z| = 00 so that /> 0 and the contribution to (4.15) from
the interval [ — £ +iy, — & +i7] is asymptotically negligible as |z| -~c0in 0 < | argz| < i=.
We now consider the integral

o +iy
j et tha-¥ W, (1) dt, (4.17)
—oE+iy

where 8 has been chosen so that the path of integration lies entirely in the domain |arg| < .

Employing the asymptotic expansion of W, ,(#2) valid for arbitrary v and « (Slater 1960, p. 61)
N-1 ( — )n
Wi o) = cd8 2 3 2l (v —r), (F—v—r)p 74+ Oecmi 2e2Y) - (4.18)
n=0 :

for |¢| >o0in |argt| < n we find that (4.17) becomes

[V ()" oty ,
el? { -G tv—k), -y —K)nj e~ -2 A d¢ 4 O( Z%a—%+2x-—2N)}
n=1 n —6§+i7,

= gt (5 2 i, vz [

A
e (1 + 2) dw + 0 (z=2N )} ,
n= —(+8)¢ z

(4.19)

where we have put f = w+zand A = a—§ +2«x—2n.
The integral appearing in (4.19) may be written as

© w A © w A
f e‘%w”(l +——) dw—f e‘%w”(l——-) dw. (4.20)
—w z A+8)E z

On the path of integration of the second integral in (4.20) we have for Re (z) > 0and |z| > 1

sin@ < {sin?6 + 62 cos? O} < '1-—;‘ < 1+uw,

arg (1 —%)

© A
f c-%ws(l -—Q) dwl < |cosec §|'Re griTm ("”Jw e 1" (1 +w)Re Wi gy
1+8)¢ Z a+8)¢

<,

so that

= O(c—H+ore) (4.21)

for £—>oo. The constant in the O symbol tends to infinity as 6> 0 so that provided |z| - o0 in
0 < |argz| < %= the integral in (4.20) along the path [(1 +¢) £, ) is asymptotically negligible.

. © w\?
It remains to evaluate f e (1 +E) dw
—
A
for large |z| in 0 < |argz| < =, where A = $a—3 42« — 2n. Expanding (1 +Lz—v) by means of

Taylor’s theorem in the form (Hardy 1952, p. 476; Whittaker & Watson 1965, p. 109)

A(A— 1)..7.n(!)t—m+ 1) (%’)m_;.}am(w,Z),

R, (w,z) = AA-L)..A=m) (g)mﬂ (1 +§)A]1 um (1 +uw)_}\_1 du,

m! 0 z

w\?* Aw
T+=) =14Z—+...+
z 1! z
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which is valid for arbitrary complex A and z provided 1 +w/z is not a negative real number, we
find

[7 et (1) aw = o[ Tee {1 AED (B AA OB (0 g,

+ f ? e 3 Rypr(w, z) dw

M (172)-m ©
= mt 2 05 (-0 (<4 + [ et R, 2) du. (422
n= . — 0
Now for real w and 0 < # < 1 we have, assuming |z| > 1,

< 1+,

uw
arg (1 +;)l < T,

where 6 = arg z and in the latter inequality it is supposed that z is not real. Then

sinﬁsll+li1£
z

—_ — 2M+1 A 1 —A—1
bt 1 < B | o2
: 0
< |A(A —(;3‘4-5/\1)7 2M)| |w|22+ (1 + | w])2Re M |cosec O] 1+2Re (i gnilm ()

wl2M+1
=K o (1 + |]) 2Re @ | cosec O1+21Re @,
where K is an assignable constant, so that when |z]| > 1

Uw e 3" Ryyr(w, 2) dwl < fw e~ 3" | Ry (w, 2) | dw

14+2[Re ()| oo
- 2K|cosec 0| f =10 211 4 gp)2Re )l dyp

IZ|2M+1 0

= O(z-2M-1), (4.23)

since the integral is convergent and independent of z. The constant in the O symbol in (4.23)
contains |cosec §|1+2Re Wl and consequently tends to infinity as 6 0.

From (4.19), (4.21), (4.22) and (4.23) the contribution to (4.1) from the path C, as |z| -0 in
0 < |argz| < im becomes (considering M > N)

(2n)%z§a—§+2xe%z9= § ) Gtr=n)a ==k,

n=0 n! 2z

x{ 5 G in (=4 +0(z_2M-1)}+0(z-2N—2)}

m=0 m! (§2%)™

(4.24)
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526 ’ R.B. PARIS AND A.D.WOOD

where the terms corresponding to m > N —n in the inner sum have been included in the order
term. Putting r = n +m the double sum in (4.24) may be written

12\7: (=) +v—K),3—v—k), & (%—%/\)r—n(_%A)r—n(%zz)n—r

20 £ 2 )
- 5 ey 3 e e gy, (g,
=§0(2i)_r(g_%a—2x)2,nzi: St é%_% _gzg:;;fl’)‘n(%)” (4.25)

upon reversal of the order of summation and employing the result (e +#),_, = (®),/(®),. The
inner sum in (4.25) may be expressed as a terminating 3F, generalized hypergeometric function
so that as |z| >00in 0 < |argz| < 7

t 5 5 2 b (222)—7L b
et tha-f W (12) dt ~ (2m)bzieiceis ) (3—3a—2k)g,
Cy ’ n=0 n!
n, A 4+v—k, 2—v—«k;
F H > 2 ’ 1 . 4.2
X 2(——1a —K, ——la —K; 2) ( 6)

From (4.14) and (4.26) we therefore obtain the asymptotic expansion of U, ,(a, 2) for |z| » o0
in 0 < |argz| < = provided 2 is non-integral
' . 2 (222 n, y+v—kK, ¥—v—k;
~ (2m)k hotraeede 3 225 o . % % 5y
Uoley 2) = (2npstotiacet £ CELT g ja2y ([ 1050 3700054
o) N © z7 (L —v—k)
— T (_)ddet 2N 7 m v, 1
Torv—rm 2 I (o), [Ge—i-em
I'(—2v)
rG=v-o

- W‘T(—%a—%+2v+2n) oFi(=n, —n—2v; F—v+k—n; §),
(4.27)

xoFy(—n, —n+2v; F+v+k—mn; §)+ (—z)i-to-2v

® z7m (v —k)

XZ
=0

where —z is to be interpreted as e¥™ z according as z lies in the upper or lower half plane
respectively.

The analysis of the contribution to U, ,(a, z) from the path C, breaks down as arg z— 0 since a
part of this path then lies in a neighbourhood of the origin for fixed large |z| where use of the
expansion (4.18) for W, ,(¢?) is no longer permitted. When arg z = 0, however, the original path
of integration in (2.2) passes over the saddle point at ¢ = z and no deformation of the path
[0, 00) into the paths C; and C, is necessary. By means of analysis identical to that employed in
estimating (4.17) itis found that, when arg z = 0, U, ,(g, 2) has the exponential asymptotic expan-
sion given by the right hand side of (4.26). This exponential expansion is, moreover, uniformly
valid in arg z as arg z—> 0 since the path of integration in (2.2) may be continuously deformed to
pass over the saddle point situated at ¢ = z and the right hand side of (4.26) consequently repre-
sents the asymptotic expansion of U, ,(a,z) in |arg z| < }m in the sense of Poincaré.f

It will be observed from (4.27) that on crossing arg z = 0, where the algebraic expansions are of
maximum degree of subdominancy, the coefficients of zi—34+2” multiplying the algebraic expan-
sions change discontinuously by the factor exp [27i(} — $a + 2v)]. This is the Stokes phenomenon

+ The asymptotic expansion of U, ,(a, 2) given in (4.27) is complete in the wider sense of Olver (1964).
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where the coefficients of the subdominant algebraic terms change discontinuously in a neigh-
bourhood of arg z = 0 (which may, for convenience, be taken to be arg z = 0) in order to preserve
the single-valuedness of U, (4, z) as z describes a circuit about the origin in the z-plane. On
argz = +inthe exponentlal expansion is of maximum degree of subdominancy and its coefficient
changes discontinuously} becoming zero in Re(z) < 0. The rays argz = 0, + }m are conse-
quently Stokes lines for the function defined by U, ,(a, z) with the rays argz = + {n being anti-
Stokes lines upon which the exponential and algebralc expansions are equally significant.

When 2v takes on integral values, the analysis in §4 (@) of the contribution from the path C,
needs to be modified. Employing the series representation of W, ,(¢2) for integral values of 2v it
can be shown that the contribution to (4.1) from C; yields the expansion given in (3.8), as must
be the case since the domains of validity of the algebraic expansions resulting from C, and that
from (8.1) overlap in in < |argz| < =. The exponential expansion (4.26) remains unaltered for
integral values of 2v since the expansion of W, ,(¢2) in (4.18) is valid for arbitrary v.

The asymptotic analysis of U, ,(4, z) in the half plane |arg z| < 4 has been obtained by means
of the integral representation (2.2) which defines U, ,(a, z) only in the domain of the parameters
given by Re (a) > 144 |Re (v)|. This condition arises from the behaviour of the integrand in
(2.2) near the origin in the #-plane and consequently only affects the contribution to (4.1) from
the path C;. It will be shown in §5 how the integral representation (2.2) can be continued
analyticallyinto Re (a) < 1+4 |Re (v)|, essentially by replacing the divergent part of the integral
by a finite number of terms of (4.14), and that the algebraic expansion (4.14) resulting from the
path C,; holds in this wider domain of the parameters.

The special case & = § + v presents some interest since from (2.16) U, (4, z) may be expressed
in terms of the Weber parabolic cylinder function, with (2.16) holding for all values of @ and v,
except those in (2.10), by analytic continuation. The exponential expansion (1.3) becomes in this
case

éd:v ,,(Z) (275)% 2 ( ) (i_—a'*' 2V)2n3

since the 3F, hypergeometric function is equal to unity, and the algebraic expansion in the form
(1.5) reduces to
S%:l:v, :l:u(z) =0,

Sfhw@ = £ L @ raa-g 2001 0m),

since the ,F; hypergeometric function contracts to ,Fy(—n;;%) = 2~ Employing the asymptotic
expansion of the Weber function for |z| - oo (Whittaker & Watson 1965, p. 347) it can be seen that
the expansions (1.6) are in agreement in their common ranges of validity with that of the right
hand side of (2.16).

5. THE EXTENsSION OF U, (4, z) OUTSIDE THE DOMAIN Re(a) > 1+4|Re(v)|

The integral representation (2.2) of the solution U, ,(a, z) of (2.1) is valid only for those values
of a and v which satisfy the inequality (2.4):

Re(a) > 1+4|Re (¥)].

1 Extension of the analysis in §4 (b) to the domain |argz| < }n+€ewheree > 0, shows in fact that the coefficient
multiplying the exponential expansion changes in two equal half-jumps as the rays argz = + in are crossed.

40 Vol. 2g3. A
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528 R.B.PARIS AND A.D. WOOD

These values correspond to the domain D, in figure 2. Since v is defined via (2.3) from the con-
stants ¢ and b occurring in the differential equation (2.1), this represents an awkward restriction
on the class of equations which may be treated. For instance, if ¢ = 1, then the integral represen-
tation solution fails to exist for any 4. We therefore show in this section how the function given in
D, by the integral representation (2.2) may be extended, first to the domain D, given by

Re (a) +3 > 4|Re ()], (5.1)
and thence to the domain D,,, for arbitrary positive integer n, given by
Re(a) +4n—1 > 4|Re (v)]. (5.2)

Since for every pair (v,a) we have (Re (v),Re (a))eD,, for some integer 7, (5.2) provides an
extension to all finite values of (v, 4). It can be shown by standard methods (Wood 1968) that
these extensions remain solutions of the differential equation (2.1). The removal of the restric-
tion (2.4) is particularly important in applications where b is an eigenvalue parameter talking all
complex values (see Wood 1971).

Ficure 2. The domains Dy, Dy, D,, . . . in the (Re(v), Re(a))-plane defined by Re(a)+4n—1 > 4|Re ()| for
n=0,1,2,... employed in the successive analytic continuations of U, ,(a, z).

For Re (a) > 1 let A, be the infinite strip in the y-plane given by (2.4): this corresponds to the
domain D, in the (Re (), Re (v))-plane. U, ,(a, z) is a meromorphic function of v in A,. We begin
by continuing U, (4, z) analytically from the strip A, to the larger strip A, given by (5.1) and
corresponding to D;. From (2.2) we have

1 <)
Ul 2) = [ ettt () e [ " et etontir () a,
0 1

There is no difficulty over the convergence of the second integral which is a meromorphic function
of v in the whole plane, but the first integral has a singularity at its lower end pointifv ¢ A,. Using
the series for the Whittaker function (Slater 1y6o, p. 14) we may expand the first integrand as

follows
et the-d W (12) = et 3T, (1) +T, _,(8)}, (6.3)

_ F(QV) ® (% —v _K)m t 2m—3—2v+ia
where T, () = Tty —r) mzz;o (e
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and the series are uniformly and absolutely convergent over any finite t-interval. Thus we may
integrate term-by-term to obtain

1 © @
[ ettt @) dt = F a9 1D+ anles =) T, (2,
0 m=0

I'(2v) (3—v—«) - e
where (K, ¥) = Th+v—r) (1_21))";7”!, m,(2) = f et—3t) fam—f—2v+fa dy, (5.4)

For ve A, theintegrals ,,, . ,(z) exist for all m, but for v € A, these integrals may diverge for m < n.

If we put 4 = 3a—%—2v and, for ve A,,

1
I(2) =1 ,(2) = f . etle—10 g1y,
it is easily established that

1,(2) = (&4 = 2L,11(2) + LoD}/ 11 (5.5)
and hence that

I(2) = {(n+1-z2) e+ (n+1+2%) L, 15(2) — 2l,45(2)}/ m(n+1). (5.6)

But the right hand side of (5.6) is convergent for v € A; and equal to I,(z) for ve A,. Hence it
represents the continuation of I ,(z) to A, as a meromorphic function of v with polesatv = }a ¥ {.

It is now clear that for m < n we can continue the functions represented by I,, ,(z) into the
domain A, by using the result obtained by repeated application of (5.5),

L&) = T B € Qs arnl2) + Q) ar il

where P, and @, are polynomials in z of degree 7 given by the recurrence relations
P (z) = (n+1) P 4(2) + Q,(2),
Qr1(2) = (#+7) Q,1(2) —2Q1(2),
with initial values Py(z) = Q,(2) = 1, @4(2) = —

n—1
The continuation of ¥ «,(x, v) I, ,(z) to A, is then given by
m=0

n-1 I'}a—%—2v+2m
Jor®) = 5 anli, 1) P AR Py 1 (2) b

+ Qan—2m(2) [ wran(2) + Qanom—1(2) Liyon11(2)}- (6.7)

J,, «(2) is a meromorphic function of v in A,, with simple poles at

v=1ta—} ta+i, .. fatn—4.
Thus the analytic continuation of U, ,(z) from A, to A, is provided by the function U{®)(z) given
by
Ji(2) ¢, (2) + 2 A&, ¥) L, ,(2) + (K, =) Ly, -, (2)} +f et et W (1) dt, (5.8)
m=n

where J, ,(2) is given by (5.7) and a,,(x, v), I, ,(z) by (5.4). Notice that U{")(a, z) has poles at the
first 2z values defined by (2.10). These may be removed by starting from the solution 1, ,(a, 2)
defined as a multiple of U, ,(a, z) by (2.20).

40-2
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530 R.B. PARIS AND A.D. WOOD

Although we can show that U{")(a, z) is a solution of (2.1) for those values of (, ») which satisfy
(5.2), itis not in a suitable form for obtaining an asymptotic expansion for large |z|, since J 1,(2)
is arranged in ascending powers of z. We may overcome this difficulty by expanding the term
e~#" in the integrals J,, .,(2) to obtain a series of integrals of form

flezttsdt=f°°ezttsdt—f°°ezttsdt. (5.9)
0 0 1
For Re (2) < 0 the first integral on the left hand side can be written as an inverse power of z
multiplied by a gamma function, while the second is small as |z| = co.

Alternatively, the expansion of I, ,(#?) in the form (4.7) may be used instead of (5.3) to derive
another form of the analytic continuation that is more useful for asymptotic work. With M, ,(#?)
defined as in (4.6), 4,,(v) asin (4.8) and ¥y, , asin (4.9) we may write, for ve D,,

N-1 x
[, enetan e de = emino”s g, e |
1 =

x
. _ _io _
. Uyt dy — e f e~ ¥y ,(¢) du,
n

0
(4.9)

where on the path C,, ¢ = uexpi( + ©—6) with the upper or lower sign chosen as in §4 (¢). The
formula (5.9) may then be used to show that the first term on the right hand side of (4.9) corre-
sponds to the first N terms of the first half of the expansion (4.14) which are clearly analytic for
ve Dy, apart from the poles given by (2.10). Since the second term in (4.9) is clearly analytic in
Dy it follows that the expansion and this remainder term give the analytic continuation of the
left hand side of (4.9) from D, to Dy. By repeating the argument with » for —» and combining the
two results using (4.5) we obtain the continuation of . et tio-8 W, (%) dt. Since there is no
1
problem over the analyticity of the integral along the path C,, it now follows from (4.1) that for
|arg z| < §n the solution U, ,(a,z) may be continued analytically from D, to Dy and that the
analytic continuation has the same asymptotic expansion as the original integral representation.
The asymptotic expansion (4.27) of the solution U, ,(a, z) is then valid for all values of the para-
meters ¢ and v apart from (2.10). Since the expansion (3.7) of U, ,(a,2) in |arg (—2z)| < §r was
obtained for all values of the parameters except (2.10) and integral values of 2v, the full range
expansions (1.6) are consequently seen to hold, apart from these exceptions, for all values of «,
v and k.

6. EXPONENTIALLY SMALL SOLUTIONS

The solution U, ,(a, z) of the differential equation (2.1) for |z| -+ co is exponentially large in
|argz| < in and algebraic in character in |arg (—z)| < . In many physical applications,
however, itis necessary to have solutions which are exponentially small in some sector for |z| — oo.
In this section we consider linear combinations of the solutions in (2.18) which have an exponen-
tially small expansion in a certain sector of the z-plane by arranging for the algebraic expansionsin
a domain containing this sector to cancel.

Consider the solution U, (z) defined by

Ul(z) = U—K,v(a3 lZ) +“Uk,v(a, —Z) +ﬁU—K,v(a’ _iz)a (6‘1)

where o and S are constants to be chosen. Employing the integral representation (2.2) for each of
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the solutions on the right hand side of (6.1), we deform the paths of integration in the ¢-plane in the
manner described in §4 into the paths C{ and C{ (i = 1, 2, 3) as shown in figure 3. Along the
paths C{ the phase of ¢ is chosen so that the argument of the exponential factor in each integrand
is real and negative. The contribution to U;(z) resulting from the paths C{? yields the algebraic
expansion, and for z = xe!? lying in Re (z) > 0 may be written

eidm-0y ‘F e~wwyr— YW, (12e™) +oe v W, (72) +fe™r W, (12e ™)} dy, (6.2)
0

where y = 3a—$ and 7 = ue~. Making use of the analytic continuation formulae (Slater 1960,
p- 28)
w.

—K, V

2 atmi) —
(r*e) sin 2mty

ki — etniG+v) MK, V(Tz) etmiG—) MK, -V (72)
Gt T )

toni i
W, (2 et2m) = T etely AL (72) eFE AL (1) }’

sin 21w{1“(%—v—/<) T'(1+2v) T'G+v—k)T'(1—-2v)

together with (4.5), we can show that the integrand in (6.2) vanishes identically if the constants
o and S are chosen to satisfy

21 e%ni(%a—% —2k)

R E ST o ¢

ﬂ = eﬂi(%a—%—%(). (6.3)

Cél)

cy

C;S)

Ficure 3. The paths G and CP (i = 1, 2, 3) in the ¢-plane for the linear combination U, (z) when Re(z) > 0.
Along the paths C{ the phase of ¢ is such that z¢ is real and negative. The paths C{ pass to infinity parallel
to the positive real axis.

It now follows with these values of & and f that for |z| o0 in Re (z) > 0 Uj(z) is purely expo-
nential in character possessing no algebraic expansion. This cancellation of the algebraic expan-
sions no longer holds when z lies in Re (z) < 0 on account of the discontinuous change in the
coefficients of the algebraic expansions associated with the Stokes phenomenon as one or more
of the points —z, + iz cross the positive real axis. The values of the constants « and #in (6.3) have
been obtained only for those values of @ and v satisfying (2.4) corresponding to the domain of
validity of the integral representation (2.2). This result may be readily extablished for all para-
meter values (except those in (2.10)) by direct substitution of the expansions (1.6) into (6.1) and
(6.3) and making use of the fact that

1ip—
S, 1i2) = Ty S22 (6.4)
obtained from (1.4) and (3.4).
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532 R.B. PARIS AND A.D. WOOD
The asymptotic expansion for |z| = o0 of U, (z) in the sense of Poincaré is consequently given by

Uy(z) ~ (elmz)to-i-2xe—3* §O)  (iz), larg z| < 3m, (6.5)

2 ne%ni(%a—% —2«)
I'G+v+k)I' (3 —v+k)

Uy(2) = (—2)lobiw el SO(2), Jarg(=2)| <dn.  (6.6)
The solution Uj(z) is therefore seen to be exponentially small in the sector |argz| < i=, being
exponentially large in the rest of the z-plane except on theraysarg z = + m,argz = + $n. Onthe
anti-Stokes lines arg z = + 3n the asymptotic expansion of U,(z) is the sum of (6.5) and (6.6)
together with the algebraic expansions

— 2i erda—§-20 (e—m 2)d—da f5in (} — ka + 2v) n(e 7 2) §B, ,(i2)
+sin (3 —4a—2v) n(e~ ¥ z)2§A, _ (iz)} (6.7)
on arg z = 2w, and
2i(edmiz)4-1e {sin (} — da + 2v) (et 2)> S@), (iz) +sin (} —fa—2v) n(ei™ )2 SE, _ (i)} (6.8)
on arg z = — 3. It is to be noted that the algebraic expansions (6.7) and (6.8) hold in the wider

sense of Olver (1964) in the domains }n < argz < m and — 7 < argz < — §m respectively.
A second exponentially small solution may be similarly shown to be
omedritha—§+2x)

= i ni(fa—5+2x) -
ie) = Uty )+ ot U (o 2) 4390, (o, =), (69)

possessing the asymptotic expansion for |z| - co in the sense of Poincaré

Uy(2) = Aa—%+2x oie? Sil,)v(z)’ |arg (iz) l < =, (6.10)

onperida—H
IE+v—«) I (—v—k)
This solution is exponentially small in |arg (iz)| < $n. On the anti-Stokes lines arg z = ¢n and
arg z = — }n the asymptotic expansion of Uy(z) is given by the sum of (6.10) and (6.11) together
with the algebraic expansions
— 2i erida—§+20 (e~ 2) 444 {sin (§ — fa+ 2v) n(e ™ 2)¥ $B,(2)

+sin (3 —da—2v) n(e ™z SP_(2)}  (6.12)

Uy(2) ~ zho-l-w e b SO (iz), |arg(—iz)| < {m.  (6.11)

on argz = 3w, and

2izb—4a{sin (} — 3a + 2v) 122 S®,(2) +sin (} — 3a—2v) nz~2 SE_,(2)} (6.13)
on argz = — }n. The algebraic expansions (6.12) and (6.13) hold in the wider sense of Olver in

the domains & < argz < $w and —}n < argz < 0 respectively.
The two further linear combinations of the solutions in (2.18) which possess domains in which
the asymptotic behaviour is exponentially small, may be shown to be given by

o2n e%ni(%a—g-—mx) . .
— — _ mi(ia—3+2«)
Us(2) = Ue® =2)+ Fryy g Ty (@ —i2) el (e, 2)
= Uy(—2), (6.14)

and
21 C%ni(%a—%—ZK)

Far iR TG —rrr) e

a, z) +erba-i-20 U _  (a, iz)

(6.15)

U(z) = U, (e, —i2) +

I
=
~~
|
N
S~—"
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ASYMPTOTIC EXPANSION OF SOLUTIONS 533

Apart from values of the parameters satisfying (2.10), the solutions Uy(z), Uy(z), Us(z) and Uj,(z)
constitute a fundamental system of solutions of the differential equation (2.1) possessing domains
in which the asymptotic behaviour as |z| -0 is exponentially damped.
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